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Hypertension affects approximately 25% of the adult population 
worldwide, and its prevalence is predicted to increase by 60% by 2025, 
when a total of 1.56 billion people may be affected.1 It is the major risk 

factor for cardiovascular disease and is responsible for most deaths worldwide.2 
Primary hypertension, also known as essential or idiopathic hypertension, accounts 
for as many as 95% of all cases of hypertension.3

Primary hypertension results from the interplay of internal derangements (pri-
marily in the kidney) and the external environment. Sodium, the main extracellular 
cation, has long been considered the pivotal environmental factor in the disorder. 
Numerous studies show an adverse effect of a surfeit of sodium on arterial pres-
sure.4-7 By contrast, potassium, the main intracellular cation, has usually been 
viewed as a minor factor in the pathogenesis of hypertension. However, abundant 
evidence indicates that a potassium deficit has a critical role in hypertension and its 
cardiovascular sequelae.8-10 In this review, we examine how the interdependency 
of sodium and potassium influences blood pressure. Recent evidence as well as 
classic studies point to the interaction of sodium and potassium, as compared with 
an isolated surfeit of sodium or deficit of potassium, as the dominant environmental 
factor in the pathogenesis of primary hypertension and its associated cardiovascu-
lar risk. Our review concludes with recent recommendations from the Institute of 
Medicine concerning the dietary intake of sodium and potassium.

Die ta r y Sodium a nd H y pertension

Primary hypertension and age-related increases in blood pressure are virtually ab-
sent in populations in which individual consumption of sodium chloride is less 
than 50 mmol per day; these conditions are observed mainly in populations in which 
people consume more than 100 mmol of sodium chloride per day.3 The Interna-
tional Study of Salt and Blood Pressure (INTERSALT), which included 10,079 sub-
jects from 32 countries, showed a median urinary sodium excretion value of 170 
mmol per day (approximately 9.9 g of sodium chloride per day).11 Although indi-
vidual sodium intake in most populations throughout the world exceeds 100 mmol 
per day, most people remain normotensive. It appears, then, that sodium intake 
that exceeds 50 to 100 mmol per day is necessary but not sufficient for the develop-
ment of primary hypertension.

In an analysis across populations, the INTERSALT researchers estimated an 
increase in blood pressure with age over a 30-year period (e.g., from 25 to 55 years 
of age); mean systolic blood pressure was 5 mm Hg higher and diastolic blood 
pressure was 3 mm Hg higher when sodium intake was increased by 50 mmol per 
day. In an analysis within single populations, a positive correlation between sodium 
intake and blood pressure was also detected after adjustment for a number of 
potentially confounding variables.11
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Humans share 98.4% genetic identity with 
chimpanzees, and a landmark interventional 
study in chimpanzees showed that adding up to 
15 g of sodium chloride to the diet per day in-
creased systolic blood pressure by 33 mm Hg and 
diastolic blood pressure by 10 mm Hg; the in-
creases were reversed after withdrawal of the 
sodium chloride supplement.12 In the Dietary 
Approaches to Stop Hypertension (DASH) sodium 
study, a reduction in sodium intake caused step-
wise decreases in blood pressure. Levels of sodi-
um intake studied in random order were approxi
mately 150 mmol per day, 100 mmol per day, and 
50 mmol per day.13 A meta-analysis of random-
ized controlled trials lasting at least 4 weeks con
cluded that reducing sodium intake by 50 mmol 
per day decreases systolic blood pressure by an 
average of 4.0 mm Hg and diastolic blood pres-
sure by an average of 2.5 mm Hg in hypertensive 
subjects and decreases systolic blood pressure by 
an average of 2.0 mm Hg and diastolic blood 
pressure by an average of 1.0 mm Hg in normo-
tensive subjects.14

Po ta ssium Con ten t  
of Sodium-R ich Die t s

As compared with diets based on natural foods, 
diets based on processed foods are high in sodium 
and low in potassium.3,10 For example, two slices 
of ham (57 g) contain 32.0 mmol of sodium and 
4.0 mmol of potassium, and a cup of canned 
chicken noodle soup contains 48.0 mmol of so-
dium and 1.4 mmol of potassium. Conversely, 
diets containing abundant fruits and vegetables 
are sodium-poor and potassium-rich.3,10 For exam
ple, an orange (131 g) contains no sodium and 
6.0 mmol of potassium, and a cup of boiled peas 
contains 0.3 mmol of sodium and 9.8 mmol of 
potassium. Isolated populations that eat natural 
foods have an individual potassium intake that 
exceeds 150 mmol per day and a sodium intake 
of only 20 to 40 mmol per day (the ratio of dietary 
potassium to sodium is >3 and usually closer to 
10).6,8,10 By contrast, people in industrialized na-
tions eat many processed foods and thereby ingest 
30 to 70 mmol of potassium per day and as much 
as 100 to 400 mmol of sodium per day (the usual 
dietary potassium:sodium ratio is <0.4).3,10

Hypertension affects less than 1% of people 
in isolated societies but approximately one third 
of adults in industrialized countries.3,10 Differ-

ences in the prevalence of hypertension among 
these populations have usually been attributed to 
differences in the amounts of dietary sodium 
consumed, but they could also reflect differences 
in potassium intake. The movement of isolated 
populations into more urban areas is consistent
ly associated with age-related increases in blood 
pressure and a rise in the prevalence of hyper-
tension as the dietary potassium:sodium ratio 
decreases in the new location.15,16

Va scul a r Effec t s of Po ta ssium 
Deple tion

Early reports of the vasodilatory or blood-pres-
sure–lowering properties of both potassium de-
pletion and potassium supplementation17,18 de-
layed recognition of the effects of potassium 
depletion that are toxic to the blood vessels. 
These studies of the effects of a low intake of 
potassium on blood pressure, performed mostly 
in young rats, also involved a low intake of sodi-
um and chloride. Potassium restriction causes a 
deficit in cellular potassium that triggers cells to 
gain sodium in order to maintain their tonicity 
and volume.19 The deficits of potassium, sodium, 
and chloride in the body imposed by those early 
studies contracted both the intracellular and ex-
tracellular compartments, thereby engendering a 
decrease in blood pressure.18,20 Subsequent stud-
ies in rats showed that the pressor effect of potas-
sium depletion requires abundant consumption 
of sodium chloride (e.g., 4.5 g of sodium chloride 
per 100.0 g of dietary intake).21

Population studies have shown an inverse 
relation of potassium intake to blood pressure, 
the prevalence of hypertension, or the risk of 
stroke.8,22‑25 After adjusting for potentially con-
founding variables, the INTERSALT researchers 
estimated that a decrease in potassium excretion 
by 50 mmol per day was associated with an in-
crease in systolic pressure of 3.4 mm Hg and an 
increase in diastolic pressure of 1.9 mm Hg. The 
urinary potassium:sodium ratio in the INTERSALT 
study had a significant, inverse relation with 
blood pressure. This ratio bore a stronger statis-
tical relationship to blood pressure than did ei-
ther sodium or potassium excretion alone.11 As 
compared with whites, blacks have a higher prev
alence of hypertension and lower potassium in-
take; sodium intake among whites and blacks is 
similar.10,23 For example, in the Evans County 
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Study, 23% of whites and 38% of blacks had a 
diastolic pressure of 90 mm Hg or higher. The 
24-hour urinary potassium excretion averaged 
40 mmol per day for whites and 24 mmol per day 
for blacks.26

In clinical studies, a diet low in potassium 
(10 to 16 mmol per day) coupled with the partici-
pants’ usual sodium intake (120 to 200 mmol 
per day) caused sodium retention and an elevation 
of blood pressure; on average, systolic pressure 
increased by 6 mm Hg and diastolic pressure by 
4 mm Hg in normotensive subjects, and systolic 
pressure increased by 7 mm Hg and diastolic pres
sure by 6 mm Hg in hypertensive subjects.24,25

C a r diova scul a r Effec t s  
of Po ta ssium Supplemen tation

Studies have shown that increasing the potassium 
intake of hypertensive rats that were fed high-
sodium diets lowered blood pressure, reduced 
the incidence of stroke and stroke-related death, 
and prevented cardiac hypertrophy, mesenteric 
vascular damage, and renal injury.27,28 In one of 
the studies, these benefits were independent of 
the blood pressure–lowering effect of the diet.27

Kempner’s rice–fruit diet, which was intro-
duced in the 1940s, was rich in potassium and 
extremely low in sodium. This diet was widely 
used in treating hypertension and congestive 
heart failure.29 Subsequently, many studies exam-
ined the effect of potassium on blood pressure 
and most of them identified a salutary effect.8,30 
A meta-analysis of 33 randomized trials that eval
uated the effects of an increased potassium in-
take on blood pressure concluded that potassium 
supplementation (≥60 mmol per day in all but 
2 trials) lowered systolic pressure by an average 
of 4.4 mm Hg and diastolic pressure by an aver-
age of 2.5 mm Hg in hypertensive subjects and 
lowered systolic pressure by an average of 1.8 
mm Hg and diastolic pressure by an average of 
1.0 mm Hg in normotensive subjects.31 This effect 
was independent of a baseline potassium deficien
cy, and it was greater at higher levels of sodium 
excretion (≥160 mmol per day) and in trials in 
which at least 80% of the subjects were black.

Potassium supplementation can reduce the 
need for antihypertensive medication. One study 
showed that with an increased dietary potassium 
intake in hypertensive subjects, 81% of the sub-
jects needed less than half of the baseline medi-

cation and 38% required no antihypertensive 
medication for blood-pressure control, as com-
pared with 29% and 9%, respectively, in the con
trol group at 1 year of follow-up.32

In the DASH trial, a diet rich in fruits and 
vegetables, as compared with the typical Ameri-
can diet, reduced systolic pressure in the 133 hy-
pertensive subjects by 7.2 mm Hg and diastolic 
pressure by 2.8 mm Hg, at a constant level of 
sodium intake.33 The potassium content of the 
diet of fruits and vegetables was more than twice 
as high as that of the typical American diet; 
therefore, its higher potassium:sodium ratio prob
ably accounted for most of the observed reduction 
in blood pressure.

Sodium sensitivity, defined as an increase in 
blood pressure in response to a higher sodium 
chloride intake than that in the baseline diet, 
occurs in many normotensive and hypertensive 
subjects34; in normotensive subjects, sodium sensi
tivity appears to be a precursor of hypertension. 
Dietary potassium has been shown to exert a pow-
erful, dose-dependent inhibitory effect on sodium 
sensitivity. With a diet that was low in potassium 
(30 mmol per day), 79% of normotensive blacks 
and 36% of normotensive whites had sodium 
sensitivity. Supplementation with 90 mmol of po
tassium bicarbonate per day resulted in sodium 
sensitivity in only 20% of blacks; this proportion 
matched that of whites when they received supple-
mentation with only 40 mmol of potassium bi-
carbonate per day. An increase in dietary potas-
sium can even abolish sodium sensitivity in both 
normotensive and hypertensive subjects.10,34

L ack of A da p tation of the 
K idne ys t o the Moder n Die t

Human kidneys are poised to conserve sodium 
and excrete potassium. Prehistoric humans, who 
consumed a sodium-poor and potassium-rich diet, 
were well served by this mechanism.5 With such 
a diet, sodium excretion is negligible and potas-
sium excretion is high, matching potassium in-
take. The kidneys account for 90% or more of po-
tassium loss, with the remainder exiting through 
the fecal route. This mechanism, however, is un-
fit for the sodium-rich and potassium-poor mod-
ern diet. The end result of the failure of the kid-
neys to adapt to this diet is an excess of sodium 
and a deficit of potassium in hypertensive patients 
(Fig. 1).
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Aldosterone contributes to the retention of 
sodium by the kidneys. Evidence from the Fram-
ingham Offspring Study suggests that relative 
aldosterone excess, as defined by the higher aldo-
sterone values within the physiologic range, pre-
disposes normotensive subjects to hypertension.35 
In animals and humans, a low-potassium diet it-
self causes renal sodium retention by means of 
several mechanisms.10,24,25,36

A low-potassium diet leads to a potassium 
deficit in the body as a result of inadequate con-
servation of potassium by the kidneys and the 
alimentary tract; with such a diet, fecal potassi-
um losses can exceed even urinary losses.37 Fur-
thermore, a high-sodium intake increases kali-
uresis, especially when sodium reabsorption by 
the renal cortical collecting tubule (where sodium 
reabsorption and potassium secretion are func-
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Figure 1. Interaction of the Modern Western Diet and the Kidneys in the Pathogenesis of Primary Hypertension.

The modern Western diet interacts with the kidneys to generate excess sodium and cause a deficit of potassium  
in the body; these changes increase peripheral vascular resistance and establish hypertension. An initial increase in  
the volume of extracellular fluid is countered by pressure natriuresis. 
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tionally linked) is enhanced (as it is in primary 
hypertension).38

Excess sodium and a deficit of potassium in 
hypertensive animals and humans have been de-
scribed previously.3 Exchangeable sodium (mea-
sured by the isotope-dilution technique) is in-
creased in hypertensive subjects39 and correlates 
positively with arterial pressure; this correlation 
is highest in older patients.40 Despite an excess 
of sodium, extracellular fluid volume, plasma vol
ume, and blood volume are not increased in pri-
mary hypertension.41,42 Conversely, exchangeable 
potassium (measured by the isotope-dilution tech
nique) correlates negatively with arterial pressure 
in primary hypertension.40 Skeletal-muscle potas-
sium is decreased in untreated hypertension, but 
serum potassium, generally an unreliable index 
of potassium content in the body, is within the 
normal range.43 Systolic and diastolic blood pres-
sures are negatively correlated with muscle potas-
sium in normotensive and hypertensive subjects.44

Mech a nisms of A lter ed Sodium 
a nd Po ta ssium Homeos ta sis

Reabsorption of filtered sodium by the renal tu-
bules is increased in primary hypertension be-
cause of stimulation of several sodium transport-
ers located at the luminal membrane, as well as 
the sodium pump, which is localized to the baso-
lateral membrane and provides the energy for such 
transport (Fig. 2). A pivotal luminal transporter 
is sodium–hydrogen exchanger type 3, which re-
sides in the proximal tubule and the thick as-
cending limb of the loop of Henle, where the 
bulk of filtered sodium is reabsorbed. The activity 
of this exchanger is increased in the kidneys of 
rats with hypertension.45 Moreover, potassium 
depletion enhances sodium–hydrogen exchanger 
type 3 by inducing intracellular acidosis and by 
stimulating the sympathetic nervous system and 
the renin–angiotensin system.46 Dietary potas-
sium supplementation has opposite effects. The 
sodium–chloride cotransporter in the distal tubule, 
the epithelial sodium channel in the collecting 
duct, and the sodium pump are activated by the 
aldosterone excess in primary hypertension, there
by promoting sodium retention and potassium 
loss.35,45 A high-sodium diet increases potassium 
excretion by increasing distal sodium delivery.

An endogenous “digitalis-like factor,” which is 

identical to ouabain or a stereoisomer of ouabain, 
is released by the adrenal glands and the brain in 
response to a high-sodium diet. There are high 
levels of digitalis-like factor in the plasma of ap-
proximately 40% of untreated patients with pri-
mary hypertension, and these levels correlate di-
rectly with blood pressure.47 Digitalis-like factor 
mediates sodium retention by increasing the ac-
tivity and expression of the renal sodium pump 
(Fig. 2).48

Contrary to its short-term effects, the long-
term effect of potassium depletion is to stimulate 
the activity and expression of the renal sodium 
pump, thereby promoting sodium retention.48-50 
Such stimulation has been shown in cultured 
renal cells (after a 24-hour incubation in a low-
potassium bath) and in rats fed a low-potassium 
diet for 5 weeks.49,51 This effect is similar to the 
response to prolonged incubation of renal cells 
with ouabain for 5 days or to infusion of ouabain 
into rats for 3 to 4 weeks; the latter maneuver 
raises blood pressure.52 The long-term stimula-
tory effect on the renal sodium pump (which 
mediates sodium retention) contrasts with the 
inhibitory effect of potassium depletion and digi-
talis-like factor on the vascular sodium pump.

Additional mechanisms of sodium retention in 
primary hypertension have been proposed, includ
ing a congenital reduction in the number of 
nephrons, diminished renal medullary blood flow, 
and subtle acquired renal injury due to ischemia 
or interstitial inflammation.3,5,7,53 It is likely 
that heredity contributes to primary hypertension 
through several genes involved in the regulation 
of vascular tone and the reabsorption of sodium 
by the kidneys.54 Such a polygenic effect could 
result from gain-of-function mutations and poly-
morphisms in genes encoding components or 
regulatory molecules of the renin–angiotensin 
system and renal sodium transporters in sub-
groups of the population (Fig. 2).45 Examples are 
activating polymorphisms in the genes encoding 
G protein–coupled receptor kinases (which regu-
late dopamine receptors involved in sodium re-
absorption in the renal proximal tubule) and 
α-adducin (a cytoskeletal protein modulating the 
activity of the renal sodium pump).45 Population-
based investigations of candidate genes for hyper-
tension have not produced unequivocal results, 
however. Expression of hypertension-related genes 
might be strongly affected by environmental and 
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behavioral interactions that differ within a pop-
ulation and across populations.55

In rats, coadministration of sodium and min-
eralocorticoids results in sodium retention, potas
sium depletion, hypertension, and extensive tis-
sue damage. These changes bear a remarkable 
similarity to the changes in rats with hypertension 
induced by a high-sodium and low-potassium 
diet, which suppresses endogenous mineralocorti

coids56,57 (Table 1). In both settings, the conse-
quences of an excess of sodium and a potassium 
deficit in the body could be largely responsible for 
the hypertension and associated tissue injury.58 
Furthermore, in primary aldosteronism, potassium 
administration augments aldosterone levels and 
yet reduces blood pressure, normalizes the circu-
latory reflexes of increased sympathetic activity, 
and corrects baroreceptor hyporesponsiveness.59‑61

Figure 2. Molecular Mechanisms Implicated in the Retention of Sodium and Loss of Potassium by the Kidneys in Primary Hypertension.

Solid arrows indicate an increase or stimulation, and the broken arrow indicates inhibition. Numbers on the left denote the approxi-
mate percentage of reabsorption of filtered sodium in each nephronal segment during normal conditions. Several influences acting 
on the luminal sodium transporters and the basolateral sodium pump stimulate sodium retention and potassium loss. Promotion of 
sodium reabsorption by the activated epithelial sodium channel (ENaC) generates a more negative luminal membrane voltage (Vm) 
in the collecting duct that enhances potassium secretion through the luminal potassium channel and promotes kaliuresis. NHE-3 de-
notes sodium–hydrogen exchanger type 3, ACE angiotensin-converting enzyme, NKCC2 sodium–potassium2 chloride cotransporter,  
and NCC sodium–chloride cotransporter. PST 2238 (rostafuroxin) antagonizes the effect of digitalis-like factor on the sodium pump.
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Sodium R e ten tion, Po ta ssium 
Deple tion, a nd H y pertension

Effects on the Arterial Wall

Sodium retention, by means of the release of 
digitalis-like factor, and a potassium deficit or 
hypokalemia inhibit the sodium pump of arterial 
and arteriolar vascular smooth-muscle cells, there
by increasing the sodium concentration and de-
creasing the potassium concentration in the intra-
cellular fluid47,62 (Fig. 3). Increased intracellular 
sodium stimulates the sodium–calcium exchanger 
type 1 in the membrane, driving calcium into 
cells. A deficit of potassium in the body or hypo-
kalemia inhibits potassium channels in the cell 
membrane, depolarizing the membrane (the mem
brane potential shifts closer to 0). Because of its 

electrogenic nature, the inhibition of the sodium 
pump itself decreases the membrane potential. 
Membrane depolarization in the vascular smooth-
muscle cells promotes a further rise in intracel-
lular calcium by activating voltage-dependent 
calcium channels in the membrane, calcium chan-
nels in the sarcoplasmic reticulum, and the sodi-
um–calcium exchanger.63 The increased cytosolic 
calcium caused by these mechanisms triggers 
contraction of the vascular smooth muscle. PST 
2238 (rostafuroxin), a compound that antagonizes 
the effects of digitalis-like factor on both the vas-
cular and renal sodium pump, and SEA 0400, a 
specific inhibitor of sodium–calcium exchanger 
type 1, have shown promise as new antihyperten-
sive agents, validating the importance of digitalis-
like factor and sodium–calcium exchanger type 1 
in primary hypertension.7,48

The homeostasis of sodium and potassium 
plays an important role in endothelium-dependent 
vasodilatation, which is defective in primary hy-
pertension.64 Sodium retention decreases the syn-
thesis of nitric oxide, an arteriolar vasodilator 
elaborated by endothelial cells, and increases the 
plasma level of asymmetric dimethyl l-arginine, 
an endogenous inhibitor of nitric oxide produc-
tion.65 Sodium restriction has the opposite effects. 
A high-potassium diet and increases in serum po
tassium, even within the physiologic range, cause 
endothelium-dependent vasodilatation by hyper-
polarizing the endothelial cell through stimula-
tion of the sodium pump and opening potassium 
channels66,67 (Fig. 4). Endothelial hyperpolariza-
tion is transmitted to the vascular smooth-muscle 
cells, resulting in decreased cytosolic calcium, 
which in turn promotes vasodilatation. Experi-
mental potassium depletion inhibits endothelium-
dependent vasodilatation.66

The contributions of prostaglandins, endothe-
lin, atrial natriuretic peptides, kallikrein, and eico
sanoids, as well as alterations in calcium balance, 
to potassium-induced changes in arterial and 
arteriolar tone and blood pressure are not well 
defined.68-71 Experimental studies suggest that 
in addition to its effects on vascular tone, a potas-
sium-rich diet decreases cardiovascular risk by 
inhibiting arterial thrombosis, atherosclerosis, 
and medial hypertrophy of the arterial wall.72-74

The long-term antihypertensive effect of low-
dose thiazide diuretics reflects not hypovolemia 
but mainly decreased systemic vascular resistance, 

Table 1. Effects of Mineralocorticoids plus a High-Sodium Diet or a High-Sodium 
and Low-Potassium Diet Alone in Laboratory Animals.*

Kidneys

Sodium retention

Potassium deficit

Potentiation of the pressor response to angiotensin II

Glomerulosclerosis, tubulointerstitial disease

Heart

Myocardial ischemia, necrosis, fibrosis, hypertrophy, failure

Arteries

Hypertension

Hypertrophy of smooth muscle

Fibrinoid necrosis of the media

Perivascular-cell infiltration

Endothelial dysfunction

Reduction in vascular compliance

Atherogenic action

Central nervous system

Autonomic imbalance

Stimulation of sympathetic outflow

Depressed baroreceptor sensitivity

Stroke

Metabolism and other effects

Insulin resistance, glucose intolerance

Stimulation of the formation of reactive oxygen species 

Stimulation of the synthesis of transforming growth factor β 

Adverse action on fibrinolysis

*	The rate of secretion of endogenous mineralocorticoids decreases in animals 
ingesting a high-sodium and low-potassium diet through a suppressive effect 
of the high-sodium intake on the renin–angiotensin system and the direct 
action of hypokalemia on the adrenal cortex. Therefore, in both settings, the 
consequences of an excess of sodium and a potassium deficit in the body 
might be largely responsible for hypertension and tissue damage.
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probably caused by changes in the ionic compo-
sition of the vascular wall.7,75 Natriuresis triggers 
cellular sodium loss and the redistribution of 
potassium into cells.76 The activation of potas-
sium channels contributes to thiazide-induced 
vasodilatation.77

Effects on the Brain

Changes in the concentrations of sodium and 
potassium in the cerebrospinal fluid, acting on a 
sensing region of the brain probably located near 
the third ventricle, have substantial but obverse 
effects on blood pressure (Fig. 5).45,78-82 Increas-
ing the concentration of sodium in the cerebro-

spinal fluid by the intraventricular administration 
of hypertonic saline raises blood pressure, where-
as increasing the concentration of potassium in 
the cerebrospinal fluid by administering potas-
sium chloride has the opposite effect.45,78 Increas-
ing dietary sodium chloride in animals and hu-
mans elicits small but significant increases in 
serum sodium83,84; limited data suggest that the 
resulting increases in the concentration of so-
dium in the cerebrospinal fluid contribute to an 
elevation in blood pressure.45,84

The intraventricular infusion of aldosterone at 
a dose that is too small to raise blood pressure 
when infused systemically decreases potassium 

Figure 3. Molecular Pathways Implicated in the Generation of Increased Arterial and Arteriolar Smooth-Muscle Tone by an Excess of Sodium 
and a Deficit of Potassium in Primary Hypertension.

Solid arrows indicate an increase or stimulation, and broken arrows indicate a decrease or inhibition. The inhibition of the sodium pump 
and the resulting stimulation of the sodium–calcium exchanger type 1 (NCX1) increase the intracellular concentration of calcium that in 
turn triggers actin–myosin interaction and stimulation of vascular contraction. Na+

i denotes intracellular sodium concentration, K+
i intracel-

lular potassium concentration, Ca2+
i intracellular calcium concentration, Vm membrane potential, and RyR ryanodine-receptor calcium 

channel. PST 2238 (rostafuroxin) antagonizes the effect of digitalis-like factor on the sodium pump. SEA-0400 is a specific inhibitor of 
the bidirectional NCX1 preferentially blocking the calcium influx pathway.
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in the cerebrospinal f luid and causes hyperten-
sion. The administration of either potassium or 
prorenone, a mineralocorticoid antagonist, through 
the same route prevents the decrease in potas-
sium in the cerebrospinal fluid and the pressor 
effect of aldosterone (Fig. 5).80,81 The salutary ac-
tion of small doses of spironolactone or eplere-
none in hypertension and heart failure may large
ly depend on the central effects of the drugs in 
preventing or minimizing a reduction in the ex-

tracellular potassium in the brain, thereby moder
ating sympathetic discharge.85

The central actions of changes in the concen-
trations of sodium and potassium in the cerebro-
spinal fluid and of an excess of sodium and a 
deficit of potassium in the body are probably 
mediated by changes in the activity of the neu-
ronal sodium pump and the renin–angiotensin 
system in the brain.45,78,82 These changes alter 
sympathetic outflow, which then causes direc-

Figure 4. Molecular Pathways Implicated in Potassium-Induced, Endothelium-Dependent Vasodilatation.

Solid arrows indicate an increase or stimulation, and broken arrows indicate a decrease or inhibition. The stimulation 
of the sodium pump and the opening of the potassium channels hyperpolarize the endothelial cell (with membrane 
potential [Vm] shifting to more negative values). Endothelial-cell hyperpolarization is transmitted to the vascular 
smooth-muscle cell by means of myoendothelial gap junctions and also by increasing the intracellular calcium con-
centration (Ca2+

i). The latter change activates potassium channels of small (SK3) and intermediate (IK1) conductance 
localized to the cell membrane, causing the potassium to exit the cells and to accumulate in the myoendothelial inter-
cellular space. This accumulation of potassium adds to vascular smooth-muscle hyperpolarization by activating 
membrane potassium channels and stimulating the sodium pump. Vascular smooth-muscle hyperpolarization 
lowers Ca2+

i, resulting in vascular relaxation.
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tional changes in blood pressure.86,87 Barorecep-
tor sensitivity is depressed by potassium depletion 
and restored by potassium supplementation.59

Effects on Metabolism

Potassium depletion inhibits insulin secretion and 
is associated with glucose intolerance, whereas 
potassium infusion and hyperkalemia increase 
the secretory rate of insulin by changing the mem-
brane potential of pancreatic beta cells.88,89 Insu-
lin triggers endothelium-dependent vasodilatation 
in skeletal muscle by causing the release of nitric 
oxide90; this response is impaired in primary hy-
pertension.91

Thiazide-induced hypokalemia worsens glu-
cose intolerance in type 2 diabetes mellitus and 
increases the risk of the disorder; correction of 
hypokalemia ameliorates the glucose intoler-
ance.92 As compared with diuretics, angiotensin-
converting–enzyme inhibitors and angiotensin II 
receptor blockers, which promote potassium re-
tention, are associated with a lower risk of new-

onset type 2 diabetes.93 Treatment of thiazide-
induced hypokalemia with potassium augments 
the antihypertensive effect of the diuretic.94

Impl ic ations for Pr e v en tion 
a nd Tr e atmen t

A modified diet that approaches the high potas-
sium:sodium ratio of the diets of human ances-
tors is a critical strategy for the primary preven-
tion and treatment of hypertension. Weight loss 
with diets rich in fruits and vegetables has been 
attributed both to the low caloric density and to 
the high potassium content of these diets, which 
tend to increase the metabolic rate.95

 In its 2002 advisory, the coordinating com-
mittee of the National High Blood Pressure Edu-
cation Program identified both a reduction in 
dietary sodium and potassium supplementation 
as proven approaches for preventing and treating 
hypertension.96 The Institute of Medicine recom-
mends an intake of sodium of 65 mmol per day 
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(approximately 3.8 g of sodium chloride per day) 
for adults 50 years of age or younger, 55 mmol per 
day (approximately 3.2 g of sodium chloride per 
day) for adults 51 to 70 years of age, and 50 mmol 
per day (approximately 2.9 g of sodium chloride 
per day) for those 71 years of age or older. The 
institute also advises adults to consume at least 
120 mmol of potassium per day (approximately 
4.7 g of potassium per day, which is about twice 
the current U.S. average).10 These targets would 
require modifications for special groups, includ-
ing competitive athletes, persons working in hot 
environments, patients with chronic kidney dis-
ease or diabetes, and persons taking medications 
that affect potassium balance. Adoption of the 
institute’s recommendations would increase the 
dietary potassium:sodium ratio by a factor of 10, 
from approximately 0.2 to approximately 2.0, 
which is much closer to our ancestral standard. 

The concern that sodium restriction might in
crease cardiovascular risk by activating the sym-
pathetic and renin–angiotensin system and by 
adversely affecting blood lipids and insulin sen-

sitivity appears to be groundless for the recom-
mended sodium intake.10 Forms of potassium 
that do not contain chloride, such as those found 
naturally in fruits, vegetables, and other foods, 
offer larger cellular entry in exchange for sodium 
and greater antihypertensive effects.10,97

Following these recommendations would re-
quire a comprehensive, culture-sensitive campaign 
targeting both the general public and health care 
professionals. Food processing drastically chang-
es the cationic content of natural foods, increas-
ing sodium and decreasing potassium. Only ap-
proximately 12% of dietary sodium chloride 
originates naturally in foods, whereas approxi-
mately 80% is the result of food processing, the 
remainder being discretionary (added during cook
ing or at the table).98 Apart from educating the 
public, an agreement by the food industry to 
limit the deviation of the cationic content of pro-
cessed foods from their natural counterparts is 
essential.

No potential conflict of interest relevant to this article was 
reported.
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